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ABSTRACT

The main objective of this paper is to find a robust solution of a vehicle routing problem (VRP) that minimizes
(over all solutions) the maximum (over ail scenarios) of a performance measure. This VRP model reflects the intrinsic
difficultics in estimating travel times exactly in reality such as traffic conditions, accidents, traffic jams or weather
conditions. Accordingly. the critical element of this paper is the uncertainty model by using the scenario-based approach.
The three well-known VRP techniques are used to find the best solution for cach scenario. Method 1 is the simultaneous
route and cluster by savings algorithm, method 1 is the route first-cluster second and method Ul is the cluster first-route
second. This paper presents robustness criteria, namely, the robust deviation criterion. the sum square error robustness
criterion and the robust risk criterion. The experiments set a VRP with 3 inducement scenarios (Scenario I). as the
optimistic case, the most likely case and the worst case of traffic conditions. One hundred realization scenarios
(Scenario S') occur in the experiments. The results clearly show that method [ has higher performance than the other two
methods. The best solution from the most likely scenario is the minimax solution for the robust deviation criterion and
the sum square error robustness criterion. The worst case scenario is appropriate to the robust risk criterion.
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INTRODUCTION

Vehicle routing problem (VRP) is operational decision-making for the delivery of goods from a depot (or
multiple depots) to customers by a fleet of vehicles. The objective of VRP is to find the optimal routes for delivery
vehicles on the road network that minimize the number of vehicles required as well as the distance traveled under
constraints on capacity, travel time, and customer demand. This type of problem becomes complex when some
parameters are uncertain. Therefore, there is a need to develop routing and scheduling tools that account directly for the
uncertainty. Recently, researchers have begun to study such problems and to develop approaches for finding robust
solutions which have the best worst-case performance over a set of possible scenarios. Kouvelis and Yu (1977) discuss
approaches for handling uncertainty and they review robust discrete optimization problems and a wide variety of their
applications. This paper focuses on uncertain travel times due to traffic and travel conditions.

The VRP techniques include the simultancous route and cluster. the route first-cluster second and the cluster
first-route second. These algorithms are the heuristic and meta-heuristic techniques for solving “the minimax
optimization problems”, which is the same as minimizing (over all solutions) the maximum (over all scenarios)
performance. Tts objective is to find a robust route that minimizes the worst-case value over all data sets of uncertainty.
The traditional approaches for handling uncertainty in decision-making have been divided conventionally into three
categories: the deterministic optimization approach, the stochastic optimization approach and the robust optimization
approach. A major weakness of the deterministic approach is its inability to recognize the presence ol plausible data
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instances other than the “most likely” one used to generate the “optimal” decision. The stochastic optimization approach
does recognize the presence of multiple data instances that might be potentially realized in the future. However, the
{ailure of both stochastic and deterministic optimization approaches is their inability to recognize every decision. There is
2 whole distribution of outcomes depending on which data scenario is actually realized. Thus any approach that evaluates
decisions using only a single data scenario or the best solution has been selected in the expected outcome. In this research
aspect. decision makers in a decision environment with significant uncertainty. want a robust decision, one that performs
well across all scenarios. It hedges against the worst of all possible scenarios while the probability of data is unknown
exactly. We use a scenario-based approach. structuring uncertainty so that it is part of the robust approach, requiring
executives 1o participate in the generation and cvaluation processes for all scenarios.

The rest of this paper is organized as follows: section 2, the literature review focuses on literature which is
relevant to the vehicle routing problem with uncertain travel times. Section 3. the problem formulation and the method
explain how the problem is formulated and solved. Section 4 is the results and discussion of the experimental results.
Finally, conclusions and future work are explained in the last section.

LITERATURE REVIEW

The field of decision-making under uncertainty was pioneered in the 1950s by Dantzig (1955). and Charnes and
Cooper (1959). who set the foundation for stochastic programming and optimization under probabilistic constraints.
Stochastic programming has established itself as a powerful modeling tool when an accurate probabilistic description of
the randomness is available. However, in many real-life applications the decision-maker does not have this information
(Montemanni et al., 2007). Estimating travel times exactly is typically a difficult task. since they depend on many factors
that are difficult to predict, such as traftic conditions, accidents, traffic jams or weather conditions.

Most VRP models assume that travel times arc a deterministic approach. This approach cither completely
ignores uncertainty or uses historical data and trends to forecast the future. The major weakness of the deterministic
approach is that it does not capture the reality of problems. In the world of uncertainty, the stochastic approach does
recognize the presence of multiple data instances that might be potentially realized in the future. It is better in
representing the reality of the problems. However, before feeding the data instances to the decision model, they might be
randomly drawn from the assumed probability distribution. The failure of both the stochastic and the deterministic
approaches is their inability to recognize for all environments. The decision makers are reasonably more interested in
hedging against the risk of poor system performance for some realizations of data scenarios than in optimizing expected
system performance over all potential scenarios. This paper presents the decision environments with significant
uncertainty as a robust decision. The robustness approach is decision-making due to uncertainty, in which the uncertainty
model is not stochastic or the probability is unknown parameters (Bertsimas et al., 2007).

In the mid-1990s. research teams led by Ben-Tal and Nemirovski (1998: 1999: 2000) and El-Ghaoui and Lebret
(1997) addressed the uncertain parameters belonging to ellipsoidal sets, which remove the most unlikely outcomes of
consideration and yield tractable mathematical programming problems. In linc with these authors' terminology,
optimization for the worst-case value of parameters within a set becomes known as “robust discrete optimization”. The
robust decision under the worst-case performance is the best solution under the robust approach but it leads to being
overly conservative and high cost. The scenario-based approach is an alternative method to avoid the overly conservative
solution. The scenario-planning process is challenging when implemented in large organizations. Herrmann (1999)
applies the scenario-based approach to model the uncertainty and uses a two-space genctic algorithm to find the optimal
makespan for the robust parallel machine scheduling problem. Montemanni et al. (2007) present a new extension to the
traveling salesman problem (TSP), where the travel times are specified as a range of possible values. They apply the
robust deviation criterion and the exact methods to solve optimization. These exact methods are available for small-scale
problems but they might not be feasible for large-scale problems.

This paper proposes the scenario-based approach to model the uncertainty of travel times. The minimax
optimization problem is the main objective of this paper. It finds a robust solution under the robust criteria by using VRP
techniques. In the next section, we describe the method to solve the VRP with uncertain travel times where a travel time
is defined as a finite set interval.
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METHODS

1. Notation

K :  Number of vehicles

N :  Number of customers and depots

C,: Customer at node ifori=0.1,2.3,..N

C,: Depot

[ Travel times between customer 7 to customer f
7 Arbitrary number for customer I

d,: Demand for customer 7

q, -  Capacity of vehicle

2. Definition
This paper proposes the scenario-based approach with three robustness criteria as the following definitions.
Definition 1: A scenario S is realization of the arc travel times, i.e. ’u is the travel time for each pair of customers

ito j . The interval of the travel times is defined as [4,,u, ] where [, is minimum travel time and 1, is maximum travel

time. The scenario S is randomly generated from a [l,/ s uu,] and a matrix of the travel times costs constructed.

Definition 2: A scenario I is inducement of signiticant events that might occur in the present and the future.

Definition 3: The robust deviation criterion is defined as the one that exhibits the best worst-case deviation among all
feasible decisions over all realizable input data scenarios, i.e..

3 1 s
dev(X,8)=| >t = D1, ()
[ (kX
Definition 4: The sum square error robustness criterion is the sum square difference between the total travel times

zlu in scenario / and scenario S .

sse(X,S) = Z lU’— Zt,,x (2)
(kX (n=4

Definition 5: The robust risk criterion occurs when the total travel times Z t; in scenario S are more than scenario / .

risk(X.8)= Y 1, = >¢° 3)
(7= v
FY < Y sk, = Y 1, = Dot else risk(X,8) =0
()X () () x (X

The remainder of this paper refers to the robust deviation criteria of tour. X on scenario § as dev(X,S), the

sum square error robustness as sse(X', S) and the robust risk as 7isk (X, S). respectively.
3. Mathematical Formulation

This scction introduces a general deterministic VRP and a robust VRP. The decision variables of this problem
are X"k =1 if edge {i,j} for vehicle number Kis on the tour and 0 for otherwise. The deterministic VRP is a

counterpart of the robustness approach. The objective of individual deterministic VRP is to minimize the number of
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vehicles that can serve all customers’ demand and find the best route with minimum travel times. The mathematical
model of VRP is as follows;

Deterministic VRP :

Objective functions;

Z, = Mink )
N N K-l

Z,=Mind. Y 31, X, t,€ll,u,] k=1..K (5)
i=0 j=0 k-1

Constraints listed below;

K-1 N
¥ Xy =K i=0 (©)
k=0 j=1
K- N

DXy =1 i=123,.,N %)
k=0 j=!

"
N N
> X =Y X, =0 Yhe[l,N];k[0,K —1] (8)
poud I
u, —u, +Nx, <N -1 i=123,..N; =123, Nsizj (9
N N
NYdx,<q, Yk e[0,K 1] (10)
i=0 j=0

Je

The constraint in equation (6) specifies that the number of tours to service must not exceed the available
quantity of vehicles. The number of vehicles to service is stated by the total number of vehicles flowing from and then
turning back to the depot. Constraint (7) states that cach demand node must be visited only once. Constraint (8) requires
that all vehicles that flow into a demand point must flow out of it. Constraint (9) prevents sub-tour occurring in the
solution. Constraint (10) illustrates the capacity of the vehicles.

The robust VRP is a several deterministic VRP due to the number of scenarios. Figure I illustrates a VRP with n
scenarios. The objective is finding a minimax total travel times of scenario inducement that represent the robust VRP
solution.

68



C3

VRP

VRP,

The robust VRP can be formulated as follows. Let X be the set of all solutions. Let S be the set of all possible
scenarios. The performance of the solution is x € X and the scenario. s € S is g, (X). The problem is to find the

solution that has the best worst-case performance, which is the same as minimizing (over all solutions) the maximum
(over all scenarios) performance.

Robust VRP :

Objective functions;

Z =min{h (S)] g,(X) < b (S),s € §;X €N, F,} an
Constraints functions;
dev(X,S)
g.(X) =1 sse(X,S) (12)
risk(X,S)
The objective function in equation (11) is made explicit as equation (12). The other constraints of this problem
are the same as the original VRP for deterministic optimization.

4. Scenario-Based Approach

This paper uses the VRP techniques bascd on the scenario-based approach to solve the robust solutions under
interval uncertainty of travel times. The scenario-based approach represents the uncertainty through a finite set of
uncertainties. A scenario model can be seen as a snapshot representing the transportation network situation as a path of
any possible edge cost configuration.
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FIGURE 2A
SIMPLE EXAMPLE VRP WITH INTERVAL TRAVEL TIMES

FIGURE 2B
SCENARIO 1: THE OPTIMISTIC CASE

FIGURE 2C
SCENARIO 2: THE MOST LIKELY CASE

FIGURE 2D
SCENARIO 3: THE WORST CASE
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5. Heuristic Methods

This paper implemented the well-known VRP techniques to find the best route for each scenario: the
simultancous route and cluster method, the route first-cluster second method and the cluster first-route second method.
These three techniques use the heuristic algorithm as shown below.

5.1 The simultaneous route and cluster method (method I)
This method applies the savings algorithm (Clark and Wright, 1964) and improves the initial solutions by 2-opt
exchanges method. The algorithm is shown below.

Step 1: Calculate the savings S(i, j) = d(D, i)+ d(D, j)—d(i, j) for every pair (I, /) of demand nodes.

Step 2: Rank the savings s(7, j)and list them in descending order of magnitude. This creates the "savings list". Process
the savings list beginning with the topmost entry in the list (the largest s(7, J)).
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Step 3: For the savings s(i, /) under consideration, include link (i, j) in a route if no route constraints will be violated

through the inclusion of (i, j) in a route, and if:

a. Either, neither i nor j have already been assigned to a route, in which case a new route is initiated including
both i and j .

b. O, exactly one of the two points (i or J ) has already been included in an existing route and that point is not
interior to that route (a point is interior to a route if it is not adjacent to the depot D in the order of traversal of
points). in which case the link (i, /) is added to that same route.

¢. Or.both i and j have already been included in two different existing routes and neither point is interior to its
route, in which case the two routes are merged.

Step 4: If the savings list $(/, j) has not been exhausted, return to Step 3. processing the next entry in the list. otherwise,

stop the solution to the VRP consists of the routes created during Step 3.
(Any points that have not been assigned to a route during Step 3 must each be served by a vehicle route that
begins at the depot D visits the unassigned point and returns to D)

Step 5: Select the link (7, j) of initial solution and then swap it.

Step 6: Check the fitness function, if it is improving, construct a new route of the tour. else the existing
route must not be changed.

Step 7: Stop when the solution is not better or near optimuin.
5.2 The route first-cluster second method (method II)

Method II constructs the route first by using the genetic algorithm (GA) and then applies sweeping algorithm for
seeking the cluster of cities.

Step 1: Adapt GA for TSP (Joseph, 2008) to initialize the route construction.

Step 2: Assume the polar coordinates are available for all points of the cities to be visited by the
vehicles.

Step 3: Start the origin in the coordinate system at the depot node.

Step 4: Order in terms of increasing angle by sweeping (clockwise or counterclockwise) a ray initially drawn from the
depot to some arbitrary point known as the seed point.

Step 5: Routes are then drawn up by adding demand points to a route as these demand points are swept beginning at the
seed (whose angle can be set to 0). points are included in a route as they arc swept until the load capacity of a vehicle

precludes addition of the next point swept to the current route.

Step 6: That point then becomes the seed for the next route and the process is completed when all points have been swept
(i.c., included in a route).

5.3 The cluster first-route second method (method 111)

Method 117 is a conversion of method T1. First step becomes the sweeping algorithm for the cluster of cities and
then re-arrangement of the initial route by using GA.

6. Computational Studies

The VRP with uncertain travel times can be transformed to the deterministic VRP represented by scenario
model. An example of this problem shows three traffic conditions. There are three inducement scenarios, thus the
optimistic case, the most likely case and the worst case. Each case has a vehicle’s velocity (kilometer per hour), v, =

100, 80 and 40, respectively. The travel times between any pair of cities is calculated by Euclidean distances. Table 3.1 is
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a simple VRP with 10 cities of depot and customers. The vehicle capacity is equal to 800 units. Every day the vehicles
must start at a depot and return to transfer their load after visiting all customers in their tour. The objective of this
problem is to find a robust route with the minimax total travel times according to the cost function associated with the
chosen notions of the robustness criteria.

TABLE 3.1
A SIMPLE VRP

Cities X y Demand
1 20 30 0
2 15 19 100
3 19 21 250
4 10 20 120
5 25 32 200
6 16 50 170
7 25 44 100
8 12 64 300
9 23 73 180
10 20 65 50
Total demand 1470

RESULTS AND DISCUSSION

From section 3.6, there are 9 times of computational running for all of combinatorial, 3 inducement scenarios
and 3 heuristic methods. Table 4.1 shows an example of the computational result of scenariol by using method 1.

TABLE 4.1
THE RESULT OF METHOD I (SCENARIO 1)

From To Travel Demand Cumulative  Remainder  Number of Vehicle
node  node time node demand load vehicles utilization

1 6 12 0 0 800 1

6 8 9 170 170 630 1

87.50%

8 9 9 300 470 330 1

9 10 5 180 650 150 1

10 1 21 50 700 100 1

1 4 8 0 0 800 2

4 2 3 120 120 680 2

2 3 3 100 220 380 2 96.25%

3 5 8 250 470 330 2

5 7 7 200 670 130 2

7 | 9 100 770 30 2

Total time 93 1470

Table 4.1 is the result of method T used to solve the VRP problem in Table 3.1 for scenario 1. The result shows
details regarding the routing from-to nodes. total travel time = 93 units” time, and the customer demands do not exceed
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the vehicle capacity. The number of vehicles are equal to 2 units for which the vehicle utilization= 87.50% and 96.52%.
respectively. The graphical VRP can be plotted as Figures 4.1, 4.2 and 4.3 for methods 1, [T and I11. The results of method
11 and TIT do not show the detait like in Table 4.1 but the graphical plot in Figures 4.2 and 4.3 clearly show the routing
and the number of vehicles as follows;

FIGURE 4.1
BEST ROUTE OF METHOD 1 (SCENARIO 1)
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FIGURE 4.2
BEST ROUTE OF METHOD IT (SCENARIO 1)
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FIGURE 4.3
BEST ROUTE OF METHOD 111 (SCENARIO 1)
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The graphical results from Figures 4.1-4.3 show different routing but the numbers of vehicles are the same at 2
units. These results are the 3rd of 9 solutions that are the candidate robust solutions. Tables 4.2-4.4 illustrate the results
for all methods and scenarios as below.

TABLE 4.2
THE RESULT OF METHOD I FOR ALL SCENARIOS

Scenarios Case Best route N\L,l:;:;;g:r | T()l’:‘ilnl:jvd
1| oprimistic | S0 2 93
2| ey | T T s ey |2 "
3| wew | AT 2 254

TABLE 4.3
THE RESULT OF METHOD 11 FOR ALL SCENARIOS
rSccnarius Case Best route Numl;cr of Tota‘l travel
Vehicles time
L Tour# ! [-=->3---2>2ua->4--->6---> 1
i Optimistic TOUH 1ee>BrnOom ] (ome>Tome> 5o | 2 100
o | Tour# ] Tee->3ee>20me>4-0 >
2 Most likely Tourt2 1->Bem>9-->10 ~ 2 125
TOUr# 1 lee>3ee>2en>dea>6oe> |
/ 2
3 WOISL | 10 ) Leee5Bene5Gmae>] 0one>Tor>S5mem> | 2 249
TABLE 4.4
THE RESULT OF METHOD IIT FOR ALL SCENARIOS
Scenarios Case Best route Numl_)cr of TotaAl travel |
Vehicles time
. Tour# | 1--->3wa>20-->4=->8--->]
-
1 Optimistic TOUrH2 1oaeGmn> ] Qear> 9o Ten >G> ] 2 113
) . Tour#1 [--->3=-->2-->4-->8--> 1 5
2 Most likely e ST R N S | 2 141
Tour# | [==->3we->2--->4--->8--->
3 WOISL | D [ eo>6en> [ 0eee 9o > Teme 5o | 2 283

From Tables 4.2-4.4, 9 candidate solutions occur during the experiment. Finally, these 9 solutions are tested by
100 scenarios: scenario S is generated randomly by uniform distribution of interval travel times. The values of
dev(X,S), sse(X.S) and risk(X,S) are calculated by equations (1). (2) and (3), respectively. The maximum

values of these three robustness criteria are shown as Table 4.5.
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TABLE 4.5
THE ROBUSTNESS CRITERIA RESULTS

;
o Method Method 1 Method It Method 111
Scenario/Criterion
dev(X,S) 93.21 99.23 106.04
Scenario 1 : N
Dptitmlstic case sive(X ) 8687.18 9845.62 11243.76
risk(X,S) 93.21 99.23 106.04
dev(X,S) 69.83 74.23 78.04
Scenario 2:
Most likely case SiWZ(X 25) 4876.47 550937 | 6089.71
risk(X,S) 69.83 74.23 78.04
\ dev(X.S) 114.14 132.99 147.28
Scenario 3: )
Worst case A'SG(X ) 13027.79 17686.44 21690.50
risk(X,S) 0.00 0.00 0.00

Table 4.5 shows the maximum values of robustness criterion, g (X)) in equation (12). The robustness objective

value, Z is found from cquation (11) where Z = min{h_‘ (S)} and h (S) 2 g,(X) . Figurcs 4.4-4.6 illustrate the

results of these three criteria compared among the 9 candidate solutions. The minimum value of Z shows the best worst-
case performance of the solutions or it is the robust solution that has potential and strength against the perturbation of
traffic conditions.

FIGURE 4.4
THE ROBUST DEVIATION CRITERION COMPARISON

The Robust Deviation Criterion Comparison
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FIGURE 4.5
THE SUM SQUARE ERROR ROBUSTNESS CRITERION COMPARISON

The Sum Square Error Robustness Criterion Comparison
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FIGURE 4.6

THE ROBUST RISK CRITERION COMPARISON

The Robust Risk Criterion Comparison
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The results in Figures 4.4-4.6 are the robustness criteria comparisons that clarify the robust solution in a
minimum point of individual graphs. Figures 4.4 and 4.5, the robust deviation and the sum square error robustness
criteria, have the same trend in graphical direction. The robust solution for these criteria is scenario 2 by using method 1.
Figure 4.6 is the robust risk criterion, where the robust solution belonging to this criterion is scenario 3 with the three
methods giving about the same performance.
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